3.6.35 \(\int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx\) [535]

Optimal. Leaf size=330 \[ \frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {\sqrt {a+b} \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {b \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c
))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((
a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-b*cot(d*x+c)*E
llipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))
^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 330, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3942, 4144, 4006, 3869, 3917, 4089} \begin {gather*} \frac {\sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}+\frac {(a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{a d}+\frac {\sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqr
t[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (Sqrt[a + b]*Cot[c + d*x]*E
llipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a +
b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x
]))/(a - b))])/(a*d) + (Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3942

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cot[e +
 f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(2*d*n), Int[(d*Csc[e + f*x])^(n + 1)*(
Simp[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4144

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A
- C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e
 + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \cos (c+d x) \sqrt {a+b \sec (c+d x)} \, dx &=\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} \int \frac {b-b \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} \int \frac {b+b \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx-\frac {1}{2} b \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} b \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{2} b \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {\sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {b \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d}+\frac {\sqrt {a+b \sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 18.36, size = 2713, normalized size = 8.22 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cos[c + d*x]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(I*(a - b)*EllipticE[I*ArcSinh[Sq
rt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b
)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b
)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/
(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2))/(Sqrt[(-a + b)/(a + b)]*
d*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]*((Sec[(c + d*x)/2]^2*Sqrt[Cos[(c + d*x)/2]^2*
Sec[c + d*x]]*Tan[(c + d*x)/2]*(I*(a - b)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b
)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*
ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]
^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(
c + d*x)/2]))/(Sqrt[(-a + b)/(a + b)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]) + (a*Sqr
t[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(I*(a - b)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c +
 d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (2*I)*b*EllipticPi[-((a
+ b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])
*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Co
s[c + d*x])*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2))/(2*Sqrt[(-a + b)/(a + b)]*(b + a*Cos[c + d*x])^(3/2)*
Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]) - (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(I*(a - b)*EllipticE[I*ArcSinh
[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a
+ b)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a
- b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*
x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(c + d*x)/2])*(-(Sec[(c + d*x)/2]^4*Sin[c + d*x]) + 2*Cos[c +
d*x]*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2))/(2*Sqrt[(-a + b)/(a + b)]*Sqrt[b + a*Cos[
c + d*x]]*(Cos[c + d*x]*Sec[(c + d*x)/2]^4)^(3/2)) + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-1 + Tan[(c + d*x
)/2]^2)*(-((Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]
^2)/Sqrt[2]) + Sqrt[2]*a*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sin[c + d*x]*Tan[(c + d*
x)/2] - (Sqrt[(-a + b)/(a + b)]*(b + a*Cos[c + d*x])*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c
 + d*x]/(1 + Cos[c + d*x]))*Tan[(c + d*x)/2])/(Sqrt[2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]) + ((I/2)*(a - b)
*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*(-((a*Sec[(c + d*x)/2]^2*Sin[c
 + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(a + b)))/Sqrt[((b + a*Cos[c +
d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (I*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[
(c + d*x)/2]], (a + b)/(a - b)]*(-((a*Sec[(c + d*x)/2]^2*Sin[c + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c
 + d*x)/2]^2*Tan[(c + d*x)/2])/(a + b)))/Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - (b*Sqrt[(-a
 + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)])/((1 - ((-a + b)*Tan
[(c + d*x)/2]^2)/(a - b))*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^2)/(a - b)]*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^
2)/(a + b)]) - ((a - b)*Sqrt[(-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^
2)/(a + b)]*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^2)/(a - b)])/(2*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^2)/(a + b)
])))/(Sqrt[(-a + b)/(a + b)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]) + ((I*(a - b)*Ell
ipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c
+ d*x)/2]^2)/(a + b)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/
2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2)*(-(Cos
[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(2*Sqrt[(-a + b)
/(a + b)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]
)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(828\) vs. \(2(301)=602\).
time = 0.26, size = 829, normalized size = 2.51

method result size
default \(\frac {\left (-1+\cos \left (d x +c \right )\right )^{2} \left (2 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b -\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) a -\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b -2 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {\frac {a -b}{a +b}}\right ) b +2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) a -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \sin \left (d x +c \right ) \EllipticE \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b -2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {\frac {a -b}{a +b}}\right ) b \sin \left (d x +c \right )-\left (\cos ^{3}\left (d x +c \right )\right ) a +\left (\cos ^{2}\left (d x +c \right )\right ) a -\left (\cos ^{2}\left (d x +c \right )\right ) b +\cos \left (d x +c \right ) b \right ) \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {\frac {b +a \cos \left (d x +c \right )}{\cos \left (d x +c \right )}}}{d \left (b +a \cos \left (d x +c \right )\right ) \sin \left (d x +c \right )^{5}}\) \(829\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1+cos(d*x+c))^2*(2*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*a-cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-2*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-
b)/(a+b))^(1/2))*b+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c
)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*b-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-cos(d*x+c)^3*a+cos(d*x+c)^2*a
-cos(d*x+c)^2*b+cos(d*x+c)*b)*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)
^5

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \sec {\left (c + d x \right )}} \cos {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*cos(c + d*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \cos \left (c+d\,x\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)*(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________